Solitary wave and shock wave solutions of (1+1)-dimensional perturbed Klein-Gordon,(1+1)-dimensional Kaup-Keperschmidt and (2+1)-dimensional ZK-BBM equations
نویسندگان
چکیده
منابع مشابه
Complexition and solitary wave solutions of the (2+1)-dimensional dispersive long wave equations
In this paper, the coupled dispersive (2+1)-dimensional long wave equation is studied. The traveling wave hypothesis yields complexiton solutions. Subsequently, the wave equation is studied with power law nonlinearity where the ansatz method is applied to yield solitary wave solutions. The constraint conditions for the existence of solitons naturally fall out of the derivation of the soliton so...
متن کاملcomplexition and solitary wave solutions of the (2+1)-dimensional dispersive long wave equations
in this paper, the coupled dispersive (2+1)-dimensional long wave equation is studied. the traveling wave hypothesis yields complexiton solutions. subsequently, the wave equation is studied with power law nonlinearity where the ansatz method is applied to yield solitary wave solutions. the constraint conditions for the existence of solitons naturally fall out of the derivation of the soliton so...
متن کاملcomplexition and solitary wave solutions of the (2+1)-dimensional dispersive long wave equations
in this paper, the coupled dispersive (2+1)-dimensional long wave equation is studied. the traveling wave hypothesis yields complexiton solutions. subsequently, the wave equation is studied with power law nonlinearity where the ansatz method is applied to yield solitary wave solutions. the constraint conditions for the existence of solitons naturally fall out of the derivation of the soliton so...
متن کاملSolitary Wave solutions to the (3+1)-dimensional Jimbo Miwa equation
The homogeneous balance method can be used to construct exact traveling wave solutions of nonlinear partial differential equations. In this paper, this method is used to construct new soliton solutions of the (3+1) Jimbo--Miwa equation.
متن کاملPeriodic Wave Shock solutions of Burgers equations
In this paper we investigate the exact peroidic wave shock solutions of the Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parametr ε and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock type solution for the cauchy problem of the in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Engineering
سال: 2015
ISSN: 2391-5439
DOI: 10.1515/eng-2015-0014